通义千问7B阿里云研发的通义千问大模型系列的70亿参数规模的模型,使用了超过2.2万亿token的自建大规模预训练数据集进行语言模型的预训练。数据集包括文本和代码等多种数据类型,覆盖通用领域和专业领域,能支持8K的上下文长度,针对插件调用相关的对齐数据做了特定优化,当前模型能有效调用插件以及升级为Agent。
百川智能大模型由百川智能推出的新一代开源大语言模型,采用 2.6 万亿 Tokens 的高质量语料训练,在多个权威的中文、英文和多语言的通用、领域 benchmark上取得同尺寸最佳的效果,发布包含有7B、13B的Base和经过PPO训练的Chat版本,并提供了Chat版本的4bits量化。
清华大学ChatGLM2-6B基于开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,引入了GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练;基座模型的上下文长度扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练;基于 Multi-Query Attention 技术实现更高效的推理速度和更低的显存占用;允许商业使用。
复旦大学MOSS支持中英双语和多种插件的开源对话语言模型,MOSS基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及使用多种插件的能力。